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In this paper we consider Lagrange interpolation on the real axis. We
use the zeros of the classical Hermite polynomials as nodes of inter­
polation. Freud [4] and Nevai [7,8] have proved that Lagrange inter­
polation based on Hermite abscissas produces a convergent approximation
process in ( - 00, (0) for a wide class of functions.

The aim of the present paper is to show that the derivatives of the
Lagrange interpolating polynomials based on the roots of Hermite
polynomials converge to the derivatives of the interpolated function.

The Hermite polynomials of degree n are

n= 1, 2, ....

It is well known that Hermite polynomials are orthogonal on the real line
with respect to the weight function e- x2

• We will use the zeros

of Hn(x) as nodes of the Lagrange interpolation. If there is no danger of
misunderstanding we will write Xk instead of Xkn- The Hermite zeros are
symmetrical, that is,

k = 1, 2, ..., n.

If n is odd, then
X(n+ 1)/2 = O.

We will need the following important relation for the largest zero of
Hn(x):
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(Szego [6,6.31.19]). Here we use the symbol ~ as in Szego [6, p. 1]: if
sequences Zn' W n of numbers have the property that all wn#O and
0:::; lim IZnlwnl :::; rrm IZnlwnl < 00, then we write Zn ~ W n.

Now let f be a function defined on the real line. We denote its Lagrange
interpolating polynomial based on the Hermite abscissas by

where

n

Ln(f; x) = L f(xd lkn(x),
k~l

n= 1, 2, ...,

k = 1,2, ..., n.

To measure the continuity of an arbitrary function g we apply the usual
modulus of continuity

w(g; b) = sup Ig(x+ t) - g(t)l;
Itl,;;,5

In what follows flO) will denote f

THEOREM. Suppose that for some integer r~ 0, f(r) exists and is
uniformly continuous on (- 00, 00). Then

If(i)(x) - L~)(f; x)1 = 0(1) w(pr); n- 1/2 ) n- rI2 +i(log n + ex2/2 )

for Ixl :::;xn, i=O, 1,2, ..., r; 0(1) is independent of x and n.

COROLLARY. Iflim,5~o+ w(flr);b)logb=O then

lim L~i)(f; x) =f(i)(x)
n ~ 00

for - 00 < x < 00 and i = 0, 1,2, ..., [rI2] (the integer part of rI2). The con­
vergence is uniform in every finite interval. The hypothesis of the corollary
holds, e.g., if f(r) E Lip y, 0< y :::; 1.

We mention that Freud [4] has given a similar estimate in the case i = 0.
To prove our theorem we need some lemmas.

LEMMA 1. If fIr) exists and is continuous for some r ~ 0, furthermore let
A > 0, then there exists a polynomial Gn of degree n ~ 4r + 5 at most, that

for Ixl :::;A, i=O, 1,2, ..., r; 0(1) depends only i.
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COROLLARY. If A = Xli - n 1/2
, then

for Ixl ~xn and i=O, 1, ... , r.

Proof The lemma is an easy consequence of Gopengauz's theorem [5].

LEMMA 2 (Freud [4, Theorem 1]). We have for all real x and
n= 1, 2, ...,

n

L Ilkn(x)1 = 0(1 )(log n + eX2/2
).

k~1

LEMMA 3 (Bernstein [3]). Let Pm(x) be a polynomial of degree m and
B> 0, then we have

if Ixl < Band i = 1,2, ..., m.

Proof of Theorem. First we consider the case 0 ~ x ~ x n. Let Gn_ 1(f; x)
be a polynomial defined in Lemma 1, where the degree of Gn _ 1 is n - 1 at
most, n - 1~ 4r + 5. Then we have by the corollary of Lemma 1,

If(i)(x) - L~i)(f; x)1

~ If(i)(x) - G~i~ l(f; x)1 + IG~i~ 1(f; x) - L~i)(f; x)1

= 0(1) w(f(r); n -1 /2) n- rl2 + i/2 + IL~i)(Gn_ d - f; x)l.

Applying Lemma 3 to the second summand, with Pm(x) =
Ln(Gn~d - f;x) and B=x+e (O<e~ 1 will be chosen later), we get

(
1 )i/2If(i)(x) - L<i)(f; x)1 = O(I)(f(r); n~ 1/2) n-rI2+i/2 + 0(1)

n 2ex+ e2

xni max If [Gn_I(f;Xk)-f(Xd]lkn(t)I·
ItI ,,;x+e k~ 1

Using the corollary of Lemma 1 and Lemma 2, we can bound the second
summand by
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Choosing t: = 1 if 0:::; x:::; 1, and t: = l/x if 1< x:::; x n , we obtain for our
expression

which proves the theorem if 0:::; x:::; x n .

In the case - x n :::; X < 0 (- X n = X d, we introduce the notation
f-(x)=f(-x). A simple calculation yields Ln(f-; -x) = Ln(f; x). Since
0< -x:::; X n and w(f-(r); 0) = w(f(r); 0), we may write

If(i)(x) - L~i)(f; x)1 = O( 1) w(f(r); n -1/2) n -r/2 + i(log n + ex2
/ 2),

if -xn:::;x<O.
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